3C28E24F V1 - Page 1

- 1) An object has a constant acceleration of 2.0 meters per second². The time required for the object to accelerate from 8.0 meters per second to 28 meters per second is
 - A) 10. s C) 20. s D) 4.0 s B) 16 s
- 2) A jogger accelerates at a constant rate as she travels 5.0 meters along a straight track from point A to point B, as shown in the diagram below.

If her speed was 2.0 meters per second at point A and will be 3.0 meters per second at point B, how long will it take her to go from A to B?

- A) 2.0 s B) 3.5 s C) 1.0 s D) 4.2 s
- 3) A flashing light of constant 0.20-second period is situated on a lab cart. The diagram below represents a photograph of the light as the cart moves across a tabletop.

How much time has elapsed as the cart moved from position A to position B?

- A) 4.0 s B) 1.0 s C) 5.0 s D) 0.80 s
- 4) Oil drips at 0.4-second intervals from a car that has an oil leak. Which pattern *best* represents the spacing of oil drops as the car accelerates uniformly from rest?

$A) \bullet \bullet \bullet \bullet$	٠	• •	C) •	• •	•	•	••	•	• •	•
B) • •	•	•	D) •	•	•	٠	•	•	•	

- 5) A child riding a bicycle at 15 meters per second decelerates at the rate of 3.0 meters per second² for 4.0 seconds. What is the child's speed at the end of the 4.0 seconds?
 - B) 7.0 m/s C) 27 m/s D) 3.0 m/s A) 12 m/s
- 6) An object, starting from rest, accelerates at a rate of 3.0 meters per second squared for 6.0 seconds. The velocity of the object at the end of this time is
 - A) 2.0 m/s B) 0.50 m/s C) 18 m/s D) 3.0 m/s
- 7) A car moving at a speed of 8.0 meters per second enters a highway and accelerates at 3.0 meters per second². How fast will the car be moving after it has accelerated for 56 meters?
 - A) 20. m/s B) 4.0 m/s C) 24 m/s D) 18 m/s

- 8) A race car traveling at 10. meters per second accelerates at the rate of 1.5 meters per second² while traveling a distance of 600. meters. The final speed of the race car is approximately
 - A) 150 m/s B) 1,900 m/s C) 44 m/s D) 910 m/s
- 9) An object accelerates uniformly from rest to a speed of 50. meters per second in 5.0 seconds. The average speed of the object during the 5.0-second interval is
 - A) 10. m/s B) 50. m/s C) 5.0 m/s D) 25 m/s
- 10) The graph below represents the relationship between speed and time for a car moving in a straight line.

The magnitude of the car's acceleration is

- A) 0.10 m/s^2 B) $10. \text{ m/s}^2$ C) 0.01 m/s^2 D) 1.0 m/s^2
- 11) A skier starting from rest skis straight down a slope 50. meters long in 5.0 seconds. What is the magnitude of the acceleration of the skier?
 - A) 5.0 m/s^2 B) $20. \text{ m/s}^2$ C) 9.8 m/s^2 D) 4.0 m/s^2
- 12) If an object's velocity changes from 25 meters per second to 15 meters per second in 2.0 seconds, the magnitude of the object's acceleration is
 - A) 7.5 m/s^2 B) 5.0 m/s^2 C) $20. \text{ m/s}^2$ D) 13 m/s^2
- 13) The velocity of a car changes from 60. meters per second north to 45 meters per second north in 5.0 seconds. The magnitude of the car's acceleration is
 - A) 53 m/s^2 B) 15 m/s^2 C) 3.0 m/s^2 D) 9.8 m/s^2
- 14) An object originally moving at a speed of 20. meters per second accelerates uniformly for 5.0 seconds to a final speed of 50. meters per second. What is the acceleration of the object?
 - A) 6.0 m/s^2 B) 14 m/s^2 C) 4.0 m/s^2 D) $10. \text{ m/s}^2$